Quantum effect on thermally activated glide of dislocations.
نویسندگان
چکیده
Crystal plasticity involves the motion of dislocations under stress. So far, atomistic simulations of this process have predicted Peierls stresses, the stress needed to overcome the crystal resistance in the absence of thermal fluctuations, of more than twice the experimental values, a discrepancy best-known in body-centred cubic crystals. Here we show that a large contribution arises from the crystal zero-point vibrations, which ease dislocation motion below typically half the Debye temperature. Using Wigner's quantum transition state theory in atomistic models of crystals, we found a large decrease of the kink-pair formation enthalpy due to the quantization of the crystal vibrational modes. Consequently, the flow stress predicted by Orowan's law is strongly reduced when compared with its classical approximation and in much closer agreement with experiments. This work advocates that quantum mechanics should be accounted for in simulations of materials and not only at very low temperatures or in light-atom systems.
منابع مشابه
Dislocation Structure and Mobility in Hcp Rare-Gas Solids: Quantum versus Classical
We study the structural and mobility properties of edge dislocations in rare-gas crystals with the hexagonal close-packed (hcp) structure by using classical simulation techniques. Our results are discussed in the light of recent experimental and theoretical studies on hcp 4He, an archetypal quantum crystal. According to our simulations classical hcp rare-gas crystals present a strong tendency t...
متن کاملShuffle-glide dislocation transformation in Si
The transformation of dislocation cores from the shuffle to the glide set of {111} glide planes in Si is examined in this work. The transformation is thermally activated and is favored by a resolved shear stress which applies no force on the original perfect shuffle dislocation. A resolved shear stress driving dislocation motion in the glide plane is not observed to promote the transition. The ...
متن کاملUniaxial stress-driven coupled grain boundary motion in hexagonal close-packed metals: A molecular dynamics study
Stress-driven grain boundary (GB) migration has been evident as a dominant mechanism accounting for plastic deformation in crystalline solids. Using molecular dynamics (MD) simulations on a Ti bicrystal model, we show that a uniaxial stress-driven coupling is associated with the recently observed 90 GB reorientation in shock simulations and nanopillar compression measurements. This is not consi...
متن کاملCross-Split of Dislocations: An Athermal and Rapid Plasticity Mechanism
The pathways by which dislocations, line defects within the lattice structure, overcome microstructural obstacles represent a key aspect in understanding the main mechanisms that control mechanical properties of ductile crystalline materials. While edge dislocations were believed to change their glide plane only by a slow, non-conservative, thermally activated motion, we suggest the existence o...
متن کاملFirst-principles study of secondary slip in zirconium.
Although the favored glide planes in hexagonal close-packed Zr are prismatic, screw dislocations can escape their habit plane to glide in either pyramidal or basal planes. Using ab initio calculations within the nudged elastic band method, we show that, surprisingly, both events share the same thermally activated process with an unusual conservative motion of the prismatic stacking fault perpen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature materials
دوره 11 10 شماره
صفحات -
تاریخ انتشار 2012